<u>THE WEST AFRICAN EXAMINATION COUNCIL</u> <u>WASSCE FOR PRIVATE CANDIDATES, 2023 – SECOND SERIES</u> <u>FINAL MARKING SCHEME</u> <u>GENERAL MATHEMATICS / MATHEMATICS (CORE) 2</u>

GENERAL INSTRUCTIONS

- 1. Marks are subdivided into method (M) marks, accuracy (A) and independent accuracy marks not preceded by M mark (B).
- 2. The M marks should be given for a particular stage if the method is correct; that is, it would, if correctly carried out without numerical error, yield the right answer. M marks are not subdivided and unless the M Marks for a stage have been awarded, no A marks can be gained for that stage.
- 3. Deduct 2 for a misreading of the data. Deduct 1 for an answer not given to the degree of accuracy asked for, but this should not be more than once in a question. Deduct 1 for premature approximation which does not considerably simplify the subsequent work.

Deduction could only be made from A or B marks and not from M marks.

- 4. Give 0 for results obtained for work that is indecipherable or wholly suppressed (W.S.O). Deduct 1 mark for omission of an essential working (oew-1).
- 5 Do not mark beyond the first appearance of a correct answer, i.e. ignore further working after a correct answer.
- 6. For geometric proofs, except when otherwise stated above, deduct 1 for an essential reason omitted or for a wrong reason given but not more than once in the question.
- 7. Deduct 1 mark for omission of units or for wrong units but this should not be more than once in one question.
- 8. If a question is attempted more than once, mark all and record the marks for that which has gained the lowest marks.
- 9. If more questions are attempted than the rubric allows, delete the marks for those extra questions which have gained the **lowest marks**.

This rule implies that for candidates answering more than 5 questions in **Part II**, consider only the best 5 questions and ignore the remaining questions in that part by writing 'MQA' through. ('MQA' denotes 'More Question Answered' than the rubric allows).

- 10. Candidates who failed to draw diagrams for questions that required diagrams, must be scored zero, whether the solution is correct or not.
- 11. Candidates who used non mathematical symbols such as *, /, ^ must be scored zero in such questions unless required by the question.
- 12. Unless otherwise stated, equivalent methods not specified in the Marking Scheme should be accepted and given appropriate marks.
- 13. The total marks according to the Marking Scheme are 100.
- 14. The final total (and not the question total) should be rounded upwards to the nearest whole number.

QUESTION NUMBER	SOLUTION	MARKS
1. (a)	$y = k_1 x^2 + \frac{k_2}{x}$	M1 for equation
	$32 = k_1(2)^2 + \frac{k_2}{2}$	M1 for substituting
	$32 = 4k_1 + \frac{k_2}{2}$	
	$64 = 8k_1 + k_2 \dots \dots \dots \dots (1)$	M1 for simplifying
	$86 = k_1(4)^2 + \frac{k_2}{4}$	
	$86 = 16k_1 + \frac{k_2}{4}$	M1 for either of the
	$344 = 64k_1 + k_2$ (2)	equations correct
	$344 = 64k_1 + k_2$	M1 for achieve
	$\frac{-(64 = 8k_1 + k_2)}{280 = 56k_1}$	M1 for solving
	$k_1 = 5$	
	$64 = 8(5) + k_2$	
	$64 - 40 = k_2$ $k_2 = 24$	
	$\kappa_2 = 24$ $\therefore y = 5x^2 + \frac{24}{x}$	A1 for $y = 5x^2 + \frac{24}{x}$
(b)	$y = 5(3)^2 + \frac{24}{3} = 45 + 8$	M1 for substituting
	= 45 + 8	
	= 53	A1 for 53
		[8 Marks]

QUESTION NUMBER	SOLUTION	MARKS
2. (a)	$x^{2}-9=0$ (x+3)(x-3)=0 x=3, x=-3	M1 for equating factors to 0 A1 for 3, -3
(b)	$2(1)a - (1)^{2}b = 7$ $2a - b = 7 \dots (1)$ $2(-2)a - (-2)^{2}b = 4$ -4a - 4b = 4 $a + b = -1 \dots (2)$	M1 for substituting A1 for equation 1 A1 for equation 2
	a+b=-1	
	3a = 6	M1 for solving
	a = 2 2 + b = -1 b = -3	A1 for a = 2 A1 for b = -3
		[8 Marks]
3.	x 6	a = 122 - 82 1
	$\frac{1}{2x+1}$	
	$6^{2} = (2x+1)^{2} + x^{2}$ $36 = 4x^{2} + 4x + 1 + x^{2}$	M1 for use of Pythagoras Theorem
	$5x^{2} + 4x - 35 = 0$ -4 \pm \sqrt{4^{2} - 4(5)(-35)}	M1 for simplifying A1 for quadratic equation
	2(5) -4± $\sqrt{179}$	M1 for solving
	$\frac{10}{x = 2.2758} x = -3.076$	A1 for all correct A1, A1 for factors
	$\therefore x = 2.28 \mathrm{cm}$	A1 for 2.28
		[8 Marks]

QUESTION NUMBER	SOLUTION	MARKS
4. (a)	$\frac{1}{4} * \frac{1}{2} = \frac{1}{4} + \frac{1}{2} + \left(\frac{1}{4}\right)^2 \left(\frac{1}{2}\right)$ $= \frac{1}{4} + \frac{1}{2} + \frac{1}{16} \times \frac{1}{2}$ $= \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}$	M1 for substituting
	$= \frac{1}{4} + \frac{1}{2} + \frac{1}{32}$ $= \frac{8 + 16 + 1}{32}$ $= \frac{25}{32}$	M1 for simplifying A1 for $\frac{25}{32}$
(b)	8 17 5 13 y	
istra (A. 8)	$a = \sqrt{17^2 - 8^2}$ $= \sqrt{225}$	
261024	= 15 $b = \sqrt{13^2 - 5^2}$ $= \sqrt{144}$ = 12	B1 for 15 B1 for 12
	$\frac{\sin x - \cos y}{\cos x + \sin y} = \frac{\frac{8}{17} - \frac{12}{13}}{\frac{15}{17} + \frac{5}{13}}$ $104 - 204$	M1 for substituting
ELSO MAR	$= \frac{195 + 85}{195 + 85}$ $= \frac{-100}{280}$ $= \frac{-5}{195 + 85}$	M1 for simplifying
	14	A1 for ⁻⁵ 14 [8 Marks]

4

QUESTION NUMBER	SOLUTION	MARKS
5. (a)	$20 = \frac{a+3+52-2a}{2}$ $40 = 55-a$ $a = 55-40$ $= 15$	M1 for finding median M1 for clearing fraction M1 for solving A1 for 15
(b) ener est	$Mean = \frac{12 + 13 \times 2 + 15 + 18 + 22 \times 2 + 23 \times 2 + 24}{10}$ $= \frac{185}{10}$ $= 18.5$ $= 19$	M1 for finding mean M1 for substituting M1 for simplifying A1 for 19
6. (a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[8 Marks] B3 $\left(-\frac{1}{2}ee\right)$ for adding in mod 9 B3 $\left(-\frac{1}{2}ee\right)$ for multiplying in mod 9
(b) (i) (ii)	$(4 \otimes 6) \oplus (2 \otimes 4) = 6 \oplus 8$ = 5 $3(2) \otimes 8 = 3$ $\therefore n = 2$	M1 for reading A1 for 5 M1 for reading A1 for 2
(iii)	$4 \otimes 4 = 7$ $8 \otimes 8 = 1$ $\therefore \{n : n = 4, 8\}$	M1 for reading A1 for {n: n = 4, 8} (-1 oms { }) [12 Marks]

5

=) 76. Sam²

QUESTION NUMBER	SOLUTION	MARKS
7. (a)	A Bcm B Score O	
	Let $\theta = \angle AOB$ $\sin\left(\frac{1}{2}\theta\right) = \frac{4}{7.5}$	
(2.2767.68)	$\frac{1}{2}\theta = \sin^{-1}\left(\frac{4}{7.5}\right)$ $= 32.23$ $\theta = 64.46^{\circ}$ $= 64.5^{\circ}$	M1 for trigonometry ratio M1 for simplifying A1 for 64.5°
(b)	Length of arc = $\frac{64.46}{360} \times 2 \times \frac{22}{7} \times 7.5$ = 8.441 = 8.44 cm	M1 for substituting A1 for 8.4 cm
(c) (i)	Area of major sector = $\frac{295.54}{360} \times \frac{22}{7} \times 7.5^2$ = $\frac{365730.75}{2,520}$ = 145.1325 = 145.1 cm ²	M1 for substituting M1 for simplifying A1 for 145.1 cm ²
(ii)	Area o $\triangle AOB = \frac{1}{2} \times 8 \times \sqrt{7.5^2 - 4^2}$ = 4 × 6.3443 = 25.3772 = 25.4 cm ²	M1 for simplifying A1 for 25.4 cm ²
. (iii)	Area of major segment = $145.13125 + 25.3772$ = 170.59845 = 170.5 cm ²	M1 for simplifying A1 for 170.5 cm ² (-1 ou/wu once only)
		[12 Marks

QUESTION NUMBER		SOLUTION	MARKS
8. (a) (i)	$y = x\sqrt{t^2 + u}$		
	$\frac{y}{r} = \sqrt{t^2 + u}$		
	$y = x\sqrt{t^{2} + u}$ $\frac{y}{x} = \sqrt{t^{2} + u}$ $\frac{y^{2}}{x^{2}} = t^{2} + u$ $y^{2} = x^{2}t^{2} + x^{2}u$ $y^{2} = x^{2}t^{2} + x^{2}u$		M1 for squaring
	$\begin{array}{c} x \\ y^2 = x^2 t^2 + x^2 u \end{array}$		M1 for clearing fraction
	$x^{2}t^{2} = y^{2} - x^{2}u$		WIT for clearing maction
	$t^2 = \frac{y^2 - x^2 u}{x^2}$		M1 for solving
	$t^{2} = \frac{y^{2} - x^{2}u}{x^{2}}$ $t = \sqrt{\frac{y^{2} - x^{2}u}{x^{2}}}$		A1 for $t = \sqrt{\frac{y^2 - x^2 u}{x^2}}$
	MI for use of Pyr		이지 #21는 약도망 23 do
(ii)	$12.2^2 - (0.0)$	$(2)^{2}(1.1)$	
	$t = \sqrt{\frac{12.2^2 - (0.0)}{(0.02)^2}}$	$(2)^{2}$	M1 for substituting
	= 609.9990 ≈ 610		M1 for simplifying
try ratio	pit for the source	1 an 1 an 1	A1 for 610
(b)	n(M) = 28	n(E) = 17 $n(U) = 50$	tér , ast - €
Bata.	s (gaitas) s (x i)) (***	$B2\left(-\frac{1}{2}ee\right)$
e e e e e e e e		12	: *(A S #)
	50 - 12 = 28 - x + x	x+17-x	M1 for equation
	38 = 45 - x		M1 for solving
	<i>x</i> = 7		-852.9 ×
	Only Piano = $28 - 7$ = 21	7	- 1 22 km
1			A1 for 21
[Maria]	Manager and and and	Later and the second	[12 Marks]

QUESTION NUMBER	SOLUTION	MARKS
9. (a)	K 70° IIIIII	$B3\left(-\frac{1}{2}ee\right)$
ามการเสม 1		(10km, 12km, 70°or 90° relative position of K, T and V)
(b) (i)	$ VT ^{2} = 12^{2} + 10^{2}$ = 144 + 100 $ VT = \sqrt{244}$ = $2\sqrt{61}$ km = 15.62 km	M1 for use of Pythagoras M1 for simplifying A1 for 15.62 km
(ii)	$\tan \theta = \frac{10}{12}$ $\theta = \tan^{-1}(\frac{5}{6})$	M1 for trigonometry ratio
	$= 39.81^{\circ}$ Bearing = 270° - (20° + 39.81°) = 210.19° = 210°	A1 for 39.81° M1 for finding bearing A1 for 210°
(c)	$\cos(39.81) = \frac{ NT }{12}$ $ NT = 12 \times 0.7682$ $= 9.2184$	M1 for ratio
	= 9.22 km	A1 for 9.22 km [12 Marks]

QUESTION NUMBER	SOLUTION	MARKS
10. (a) (i)	$\angle MSR = 180^\circ - 52^\circ$	M1 for ∠MSR
	=128°	A1 for 128°
	$\angle RNM + \angle MSR = 180^{\circ}$	
	$\angle RNM + 128^\circ = 180^\circ$	 As the second sec
	$\angle RNM = 180^\circ - 128^\circ$	M1 for ∠RNM
	$\angle RNM = 52^{\circ}$	A1 for 52°
(ii)	$\angle MOR = 2 \times 52^{\circ}$	M1 for ∠MOR
	=104°	A1 for 104°
	$\angle OMS + 104^\circ = 180^\circ$	
	$\angle OMS = 180^\circ - 104^\circ$	M1 for ∠OMS
	$\angle OMS = 76^{\circ}$	A1 for 76°
(b)	$24 - 2\tan(3x - 10) = 14$	
in the set.	$2\tan(3x-10) = 10$	M1 for equation
	$\tan\left(3x-10\right)=5$	WI for equation
	$3x - 10 = \tan^{-1}(5)$	M1 for simplifying
	$3x - 10 = 78.69^{\circ}$	
2	$3x = 88.69^{\circ}$	M1 for solving
	$x = 29.56^{\circ}$	
	= 30°	A1 for 30°
		[12 Marks

:

QUESTION NUMBER	SOLUTION	MARKS
11. (a) (i)	x-4y+1=0(1) 2x-3y-3=0(2) From equ (1) $x=4y-1$	1 10 1 ≥ 36°28 = 180° - 5 ° = 12.8°
	Substitute into equ (2) 2(4y-1)-3y-3=0	M1 for solving
	8y - 2 - 3y - 3 = 0	
	5y = 5	te asia
	y = 1	A1 for $y = 1$
	x = 4(1) - 1	The second s
	= 3	Al for $x = 3$
	$\therefore Q(3, 1)$	A1 for Q (3, 1)
(ii)	P(2, -1), Q(3, 1)	
		Abr. 1. 1.24 - 2 million - 1.
	$\frac{1+1}{3-2} = \frac{y+1}{x-2}$	M1 for finding equation of
	$2 = \frac{y+1}{x-2}$	the lines
	2x - 4 = y + 1	
	y=2x-5	A1 for $y = 2x - 5$
(iii)	$ PQ = \sqrt{(3-2)^2 + (1+1)^2}$ = $\sqrt{1+4}$	M1 for finding length
1. 1.1	$=\sqrt{1+4}$	
1. 1	$=\sqrt{5}=2.2361$	A1 for 2.2361
(b)		(At least one decimal place)
(0)	$\log_b(x-2) = \log_b y - 3$	
	$\log_b(x-2) = \log_b y - 3\log_b b$	M1 for use of law of
	$\log_b(x-2) = \log_b y - \log_b b^3$	logarithm
	$\log_b(x-2) = \log_b\left(\frac{y}{b^3}\right)$	M1 for application of law of logarithm
	$\begin{aligned} x-2 &= \frac{y}{b^3} \\ y &= b^3(x-2) \end{aligned}$	M1 for solving
	$y=b^3(x-2)$	A1 for $y = b^3 (x - 2)$
	방송 지원에 가지 않는 것이 같이 없는 것이 같이 없다.	[12 Marks]

QUESTION NUMBER	SOLUTION	MARKS
12. (a) (i)	$p = \frac{1}{2}, p^{1} = 1 - \frac{1}{2} = \frac{1}{2}$ $q = \frac{3}{4}, q^{1} = 1 - \frac{3}{4} = \frac{1}{4}$ $r = x, r^{1} = 1 - x$ $\frac{1}{12} = \left(\frac{1}{2}\right) \left(\frac{1}{4}\right) (1 - x)$	B1 for either of the compliments M1 for equation
	$\frac{1}{12} = \frac{1-x}{8}$ $\frac{1}{12} = \frac{1-x}{8}$ $\frac{1}{12} = 1-x$ $\frac{2}{3} = 1-x$	M1 for simplifying M1 for solving
	$\frac{2}{3} = 1 - x$ $x = 1 - \frac{2}{3}$ $= \frac{1}{3}$	A1 for $x = \frac{1}{3}$
(ii)	P(only one passing) = $\left[\frac{1}{2} \times \frac{1}{4} \times \frac{2}{3}\right] + \left[\frac{1}{2} \times \frac{3}{4} \times \frac{2}{3}\right] + \left[\frac{1}{2} \times \frac{1}{4} \times \frac{1}{3}\right]$	M1 for probability
	$= \left[\frac{1}{2} \times \frac{1}{4} \times \frac{1}{3} \right] + \left[\frac{1}{2} \times \frac{1}{4} \times \frac{1}{3} \right] + \left[\frac{1}{2} \times \frac{1}{4} \times \frac{1}{3} \right]$ $= \frac{2}{24} + \frac{6}{24} + \frac{1}{24}$ $= \frac{9}{24}$ $= \frac{3}{24}$	M1 for any brackets correct A1 for all correct A1 for $\frac{3}{8}$
(b)	$=\frac{1}{8}$ $x^2 - 9 - y^2 = 72$	• M1 for applying diff. of 2 squares
tala Maria	(x + 3y)(x - 3y) = 72 (x + 3y)(9) = 72 x + 3y = 8	M1 for substituting A1 for 8 [12 Marks

 $x = \frac{-1}{6} \quad y = \frac{17}{2}$

11

-

QUESTION NUMBER	SOLUTION	MARKS
13. (a)	Let $x =$ the number	
	$\frac{1}{4}x + 4\frac{1}{3} = 20\frac{2}{3} - \frac{1}{3}x$	M1 for equation
	$\frac{1}{4}x + \frac{13}{3} = \frac{62}{3} - \frac{1}{3}x$	
	$12\left(\frac{1}{3}x\right) + 12\left(\frac{13}{3}\right) = 12\left(\frac{62}{3}\right) - 12\left(\frac{1}{4}x\right)$	M1 for clearing fraction
	3x + 4(13) = 4(62) - 4x 3x + 52 = 248 - 4x	
	3x + 4x = 248 - 52 $7x = 196$	M1 for solving
	x = 28	A1 for 28
(b)	Interest after 1st half = $\frac{8}{100} \times 300,000$	M1 for finding interest
	= \$24,000 Total amount = 300,000 + 24,000	A1 for \$24, 000
	= \$324,000	A1 for \$324, 000
	Interest after 2nd half = $\frac{8}{100} \times 324,000$ = \$25,920	
	Amount at the end of the year = $25,920 + 324,000$	A1 for \$25,920
	= \$349,920.00 Interest at the end of 3rd half = $\frac{8}{100} \times 349,920$	A1 for \$349,920
ija mese	=\$27,933.60	
	Amount at the end of 3rd half year $= 27,993.6 + 349,920$	
	= \$377,913.60	A1 for \$377,916.60
	Interest at the end of 4th half= $\frac{8}{100} \times 377,913.60$	8
	= \$30,233.09	
1 2. 332 14	Amount at the end of 4th half = 30, 233.09 + 377, 913.60	
	=\$408,146.69	A1 for \$408,146.69
	Compound Interest = $408, 146.69 - 300,000$	a lange ta
	= \$108,146.69	B1 for \$108,146.69
		[Accept use of formula] [12 Marks]

GHANA	- Hame	11/01/2024
NIGERIA	PA ne	11/01/2024
GAMBIA	Karp.	11/01/2024
SIERRA LEONE	States	11/01/2024
LIBERIA		11/01/2024